COMPARISON OF NICKEL TOXICITY IN AIR-LIQUID INTERFACE MODELS OF HUMAN AND RAT BRONCHIAL EPITHELIAL CELLS

¹NiPERA Inc., 2525 Meridian Pkwy Ste 240 Durham NC 27713 USA ²The Netherlands Organization for Applied Scientific Research, TNO, Utrecht, The Netherlands ³Triskelion BV, Zeist, The Netherlands ⁴Oller Consulting LLC, Durham NC 27703

CONTACT:

<u>sbuxton@nipera.org</u> <u>www.nipera.org</u> / <u>www.nickelinstitute.org</u>

NICKEL HEALTH AND ENVIRONMENTAL SCIENCES

INTRODUCTION

ABSTRACT

Ni is used in many applications, from stainless steel to batteries. Historically, Ni ore refining has been associated with increase in lung and nasal cancers^[2].

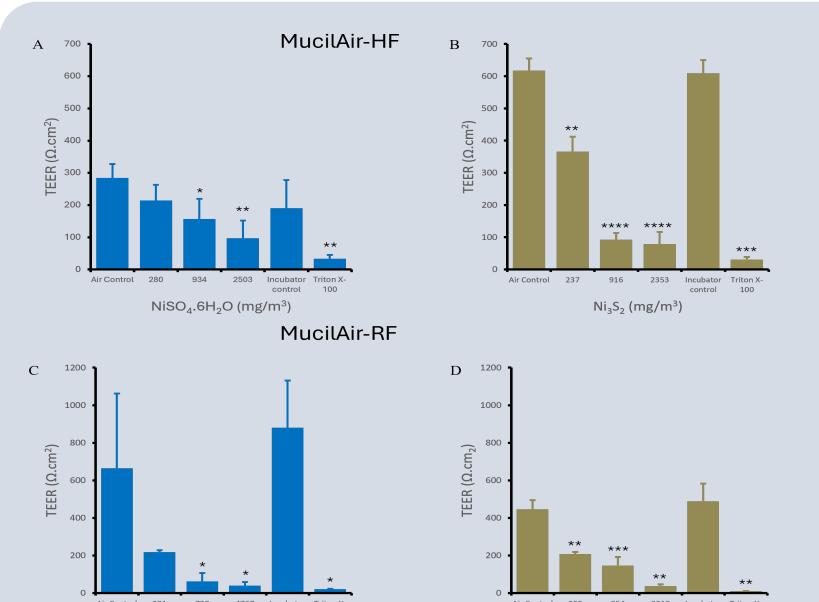
Robust databases of human and animal data are available for Ni and Ni compounds to support refined risk assessments^[2,3]. However, uncertainties exist about the comparability of toxicity between soluble and insoluble Ni compounds, and between animals and humans.

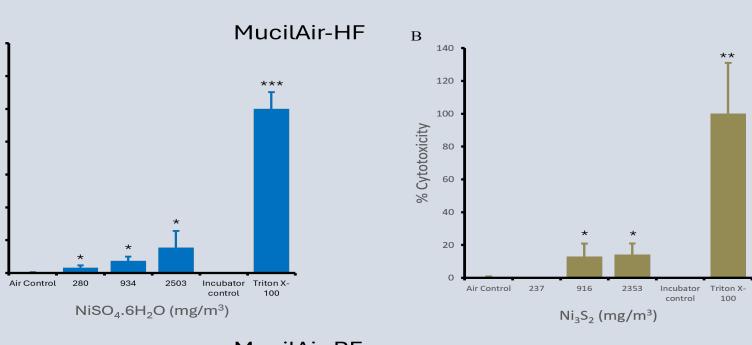
3D respiratory cell models with ALI exposures reduce animal use, are more realistic *in vitro* test systems that mimic *in vivo* inhalation, and allow the correlation of responses in animals to human tissues, potentially bridging any toxicity gap.

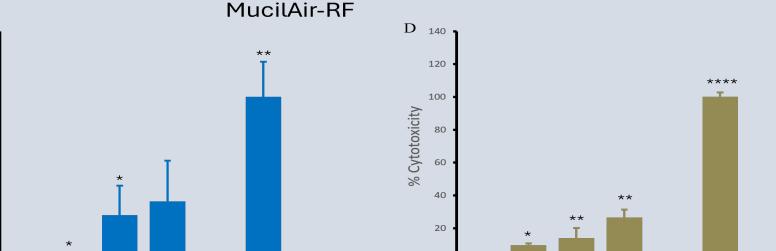
This pilot study using two Ni compounds in rat and human MucilAir models was conducted to address the rat-to-human toxicity comparability gap and investigate the differential sensitivity to toxicity triggered by the two Ni compounds.

METHODS

NiSO₄.6H₂O (22% Ni); Ni₃S₂ (73% Ni)


Vitrocell® system used for cell exposures. MucilAir models in PET (-HF) or polycarbonate (-RF) membranes were purchased


Nickel (Ni) compounds are indirect genotoxic carcinogens with threshold mode-of-action. Both Ni subsulfide (Ni₃S₂) and Ni sulfate hexahydrate (NiSO₄.6H₂O) are classified as human carcinogens, but only Ni₃S₂ induces tumors in rodents. To study the carcinogenic mode of action of both Ni compounds, we conducted studies in Air-Liquid Interface (ALI) models of rat and human bronchial epithelial cells. Rat (MucilAir-RF) and human (MucilAir-HF) MucilAir models were exposed to Ni₃S₂ and NiSO₄.6H₂O via droplet or air exposures, and transepithelial electrical resistance [TEER] (membrane integrity), lactate dehydrogenase [LDH] (cytotoxicity) and IL-6 (inflammation) were measured.


In the droplet exposures, NiSO₄.6H₂O caused more cytotoxicity than Ni₃S₂ in MucilAir-RF (data not shown). Both compounds decreased membrane integrity and increased inflammatory cytokine IL-6 in a concentration-dependent manner.

In the air exposures, both compounds decreased membrane integrity, increased cytotoxicity, and inflammatory cytokine production. At comparable mg/m³ levels, NiSO₄.6H₂O caused a greater decrease in TEER and a greater increase in inflammatory IL-6 than Ni₃S₂. These results are consistent with *in vivo* rodent studies, where at equal mg/m³ or mg Ni/m³ exposure, NiSO₄ triggered a higher increase in the expression of an inflammatory cytokine than Ni₃S₂^[1]. Higher intracellular levels of Ni₃S₂ than NiSO4, particularly in the nucleus, were observed, in agreement with previous cell studies.

THE MUCILAIR MODELS REPRODUCED THE PATTERN OF TOXICITY OBSERVED WITH THESE TWO NI COMPOUNDS IN VIVO.

from Epithelix (Geneva, Switzerland). 24 h after the 6 h exposures, TEER, LDH and IL-6 were measured.

Test atmospheres of $NiSO_4.6H_2O$ solution and Ni_3S_2 dry powder were generated using ultrasonic mesh nebulizer in a stream of compressed dry air (10.7 l/min) and turntable dust feeder, respectively.

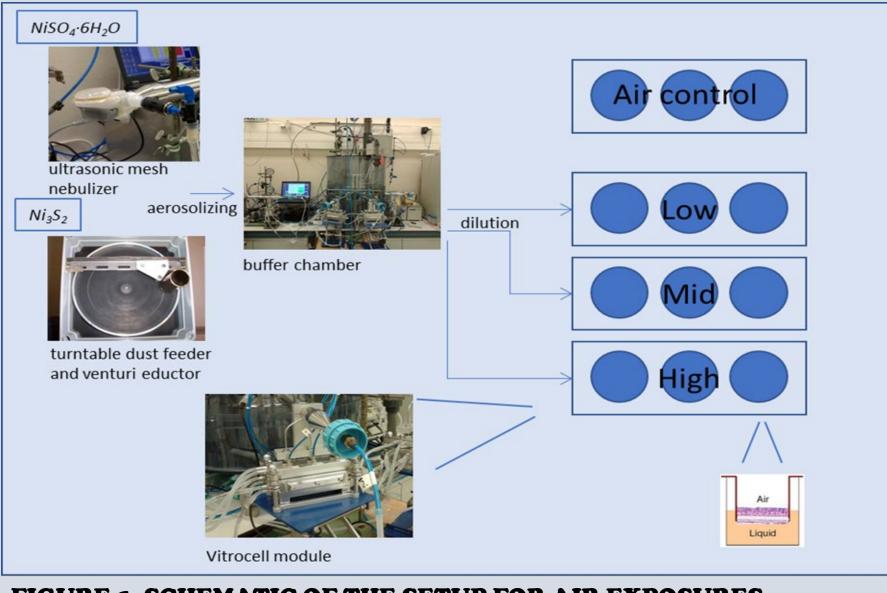
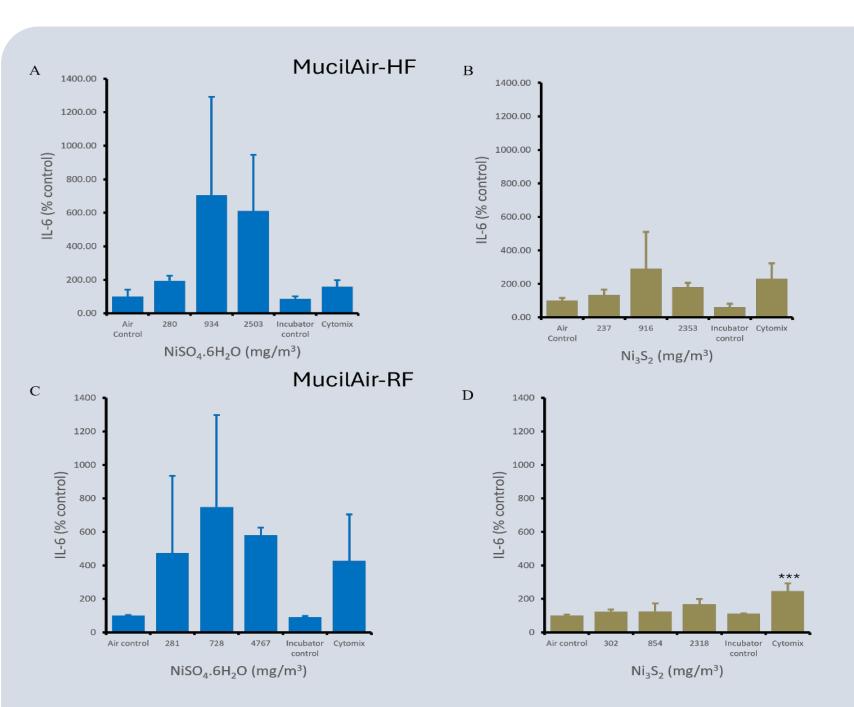
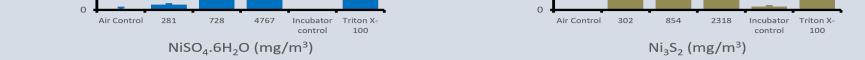


FIGURE 1. SCHEMATIC OF THE SETUP FOR AIR EXPOSURES

FIGURE 3. MEMBRANE INTEGRITY AFTER AIR EXPOSURE TO $NiSO_4.6H_2O$ AND Ni_3S_2

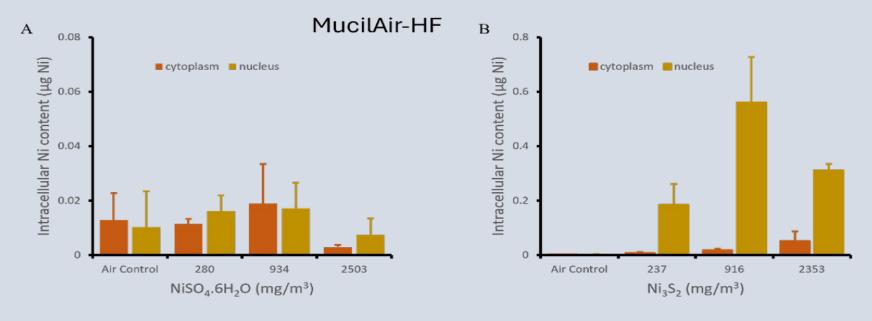

FIGURE 5. IL-6 AS A MEASURE OF INFLAMMATORY RESPONSE TO NiSO₄.6H₂O AND Ni₃S₂

FIGURE 4. CYTOTOXICITY OF NiSO₄.6H₂O AND Ni₃S₂ AFTER AIR EXPOSURE

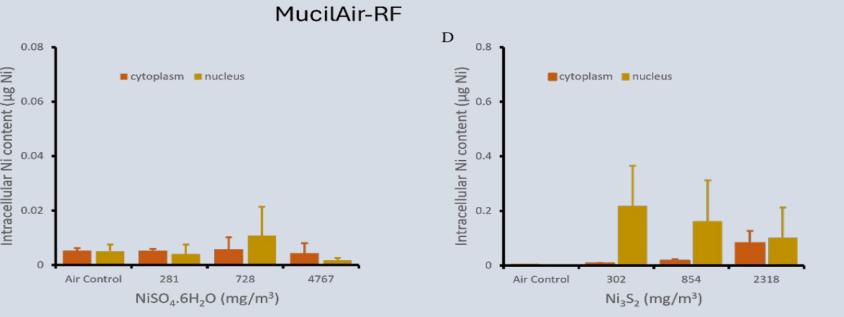


FIGURE 6. INTRACELLULAR Ni CONTENT AFTER AIR EXPOSURES TO NiSO₄.6H₂O AND Ni₃S₂

CONCLUSIONS

The rat MucilAir model was more sensitive to the effects of the Ni compounds than the human MucilAir model, with NiSO₄.6H₂O generally having greater effects than Ni₃S₂. Both models yielded results consistent with the toxicity of the two Ni compounds observed *in vivo*, and support the bioavailability model of Ni carcinogenesis.

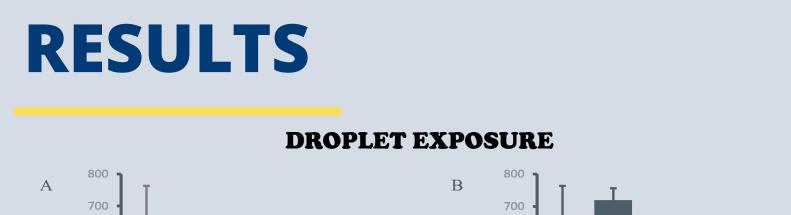


FIGURE 2. TEER & IL-6 RESPONSE AFTER DROPLET EXPOSURE TO $NiSO_4.6H_2O$ AND Ni_3S_2

origin	Batch nr	Ni exposure	method	Low	Mid	High [mg Ni/m³]	Target conc. (mg/m ³)
				[mg Ni/m ³]	[mg Ni/m ³]		
Rat	RF-MD0025	NiSO₄·6H₂O	APS	281	728	4767	489, 1468, 4407
				[62]	[<u>160]</u>	[1049]	
Human	HF-MD059401	NiSO₄∙6H₂O	APS	280	934	2503	
				[62]	[205]	[551]	
Human	HF- MD059401	Ni ₃ S ₂	APS	237	916	2352	297, 890, 2670
				[<u>173]</u>	[669]	[1717]	
Rat	RF-MucilAir Rat	Ni ₃ S ₂	Cascade Impactor				
				302	854	2318	
				[220]	[623]	[1692]	

Actual air concentrations were 50-60% of target concentrations for NiSO₄.6H₂O and \geq 80% for Ni₃S₂.

MMAD ~3.58 μm & GSD ~1.60 $NiSO_4.6H_2O,$ & 3.15 μm & 1.60 for $Ni_3S_2.$

This pilot study shows that the rat and human MucilAir models are viable for studying the toxicity of Ni compounds. Studies with these models can help bridge the gap between the animal and human mechanisms of toxicity of Ni compounds.

 Efremenko AY, Campbell JL, Dodd DE, Oller AR, Clewell HJ 3rd. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel sulfate. Environ Mol Mutagen. 2017 Oct;58(8):607-618. doi: 10.1002/em.22139.
Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, et al.

 Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, et al. Concise review of nickel human health toxicology and ecotoxicology. Inorganics. 2019;7(7).

 Oller AR, Buxton S, March TH, Benson JM. Comparative pulmonary and genotoxic responses to inhaled nickel subsulfide and nickel sulfate in F344 rats. J Appl Toxicol. 2022;2022(October):1–18.